Copied to
clipboard

G = C23.23D22order 352 = 25·11

4th non-split extension by C23 of D22 acting via D22/C22=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23.23D22, D22⋊C42C2, (C22×C44)⋊2C2, (C2×C4).65D22, C22.42(C2×D4), (C2×C22).37D4, (C22×C4)⋊3D11, Dic11⋊C43C2, C23.D116C2, C22.18(C4○D4), (C2×C22).47C23, (C2×C44).78C22, C22.9(C11⋊D4), C114(C22.D4), C2.18(D445C2), (C22×C22).39C22, (C22×D11).9C22, C22.55(C22×D11), (C2×Dic11).15C22, C2.6(C2×C11⋊D4), (C2×C11⋊D4).6C2, SmallGroup(352,124)

Series: Derived Chief Lower central Upper central

C1C2×C22 — C23.23D22
C1C11C22C2×C22C22×D11C2×C11⋊D4 — C23.23D22
C11C2×C22 — C23.23D22
C1C22C22×C4

Generators and relations for C23.23D22
 G = < a,b,c,d,e | a2=b2=c2=1, d22=c, e2=cb=bc, ab=ba, eae-1=ac=ca, ad=da, bd=db, be=eb, cd=dc, ce=ec, ede-1=bd21 >

Subgroups: 426 in 78 conjugacy classes, 33 normal (15 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, C23, C23, C11, C22⋊C4, C4⋊C4, C22×C4, C2×D4, D11, C22, C22, C22, C22.D4, Dic11, C44, D22, C2×C22, C2×C22, C2×C22, C2×Dic11, C2×Dic11, C11⋊D4, C2×C44, C2×C44, C22×D11, C22×C22, Dic11⋊C4, D22⋊C4, C23.D11, C2×C11⋊D4, C22×C44, C23.23D22
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, D11, C22.D4, D22, C11⋊D4, C22×D11, D445C2, C2×C11⋊D4, C23.23D22

Smallest permutation representation of C23.23D22
On 176 points
Generators in S176
(1 124)(2 125)(3 126)(4 127)(5 128)(6 129)(7 130)(8 131)(9 132)(10 89)(11 90)(12 91)(13 92)(14 93)(15 94)(16 95)(17 96)(18 97)(19 98)(20 99)(21 100)(22 101)(23 102)(24 103)(25 104)(26 105)(27 106)(28 107)(29 108)(30 109)(31 110)(32 111)(33 112)(34 113)(35 114)(36 115)(37 116)(38 117)(39 118)(40 119)(41 120)(42 121)(43 122)(44 123)(45 167)(46 168)(47 169)(48 170)(49 171)(50 172)(51 173)(52 174)(53 175)(54 176)(55 133)(56 134)(57 135)(58 136)(59 137)(60 138)(61 139)(62 140)(63 141)(64 142)(65 143)(66 144)(67 145)(68 146)(69 147)(70 148)(71 149)(72 150)(73 151)(74 152)(75 153)(76 154)(77 155)(78 156)(79 157)(80 158)(81 159)(82 160)(83 161)(84 162)(85 163)(86 164)(87 165)(88 166)
(1 135)(2 136)(3 137)(4 138)(5 139)(6 140)(7 141)(8 142)(9 143)(10 144)(11 145)(12 146)(13 147)(14 148)(15 149)(16 150)(17 151)(18 152)(19 153)(20 154)(21 155)(22 156)(23 157)(24 158)(25 159)(26 160)(27 161)(28 162)(29 163)(30 164)(31 165)(32 166)(33 167)(34 168)(35 169)(36 170)(37 171)(38 172)(39 173)(40 174)(41 175)(42 176)(43 133)(44 134)(45 112)(46 113)(47 114)(48 115)(49 116)(50 117)(51 118)(52 119)(53 120)(54 121)(55 122)(56 123)(57 124)(58 125)(59 126)(60 127)(61 128)(62 129)(63 130)(64 131)(65 132)(66 89)(67 90)(68 91)(69 92)(70 93)(71 94)(72 95)(73 96)(74 97)(75 98)(76 99)(77 100)(78 101)(79 102)(80 103)(81 104)(82 105)(83 106)(84 107)(85 108)(86 109)(87 110)(88 111)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 33)(12 34)(13 35)(14 36)(15 37)(16 38)(17 39)(18 40)(19 41)(20 42)(21 43)(22 44)(45 67)(46 68)(47 69)(48 70)(49 71)(50 72)(51 73)(52 74)(53 75)(54 76)(55 77)(56 78)(57 79)(58 80)(59 81)(60 82)(61 83)(62 84)(63 85)(64 86)(65 87)(66 88)(89 111)(90 112)(91 113)(92 114)(93 115)(94 116)(95 117)(96 118)(97 119)(98 120)(99 121)(100 122)(101 123)(102 124)(103 125)(104 126)(105 127)(106 128)(107 129)(108 130)(109 131)(110 132)(133 155)(134 156)(135 157)(136 158)(137 159)(138 160)(139 161)(140 162)(141 163)(142 164)(143 165)(144 166)(145 167)(146 168)(147 169)(148 170)(149 171)(150 172)(151 173)(152 174)(153 175)(154 176)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44)(45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88)(89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176)
(1 22 157 134)(2 133 158 21)(3 20 159 176)(4 175 160 19)(5 18 161 174)(6 173 162 17)(7 16 163 172)(8 171 164 15)(9 14 165 170)(10 169 166 13)(11 12 167 168)(23 44 135 156)(24 155 136 43)(25 42 137 154)(26 153 138 41)(27 40 139 152)(28 151 140 39)(29 38 141 150)(30 149 142 37)(31 36 143 148)(32 147 144 35)(33 34 145 146)(45 68 90 113)(46 112 91 67)(47 66 92 111)(48 110 93 65)(49 64 94 109)(50 108 95 63)(51 62 96 107)(52 106 97 61)(53 60 98 105)(54 104 99 59)(55 58 100 103)(56 102 101 57)(69 88 114 89)(70 132 115 87)(71 86 116 131)(72 130 117 85)(73 84 118 129)(74 128 119 83)(75 82 120 127)(76 126 121 81)(77 80 122 125)(78 124 123 79)

G:=sub<Sym(176)| (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,120)(42,121)(43,122)(44,123)(45,167)(46,168)(47,169)(48,170)(49,171)(50,172)(51,173)(52,174)(53,175)(54,176)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,159)(82,160)(83,161)(84,162)(85,163)(86,164)(87,165)(88,166), (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,163)(30,164)(31,165)(32,166)(33,167)(34,168)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,133)(44,134)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,128)(62,129)(63,130)(64,131)(65,132)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)(154,176), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,22,157,134)(2,133,158,21)(3,20,159,176)(4,175,160,19)(5,18,161,174)(6,173,162,17)(7,16,163,172)(8,171,164,15)(9,14,165,170)(10,169,166,13)(11,12,167,168)(23,44,135,156)(24,155,136,43)(25,42,137,154)(26,153,138,41)(27,40,139,152)(28,151,140,39)(29,38,141,150)(30,149,142,37)(31,36,143,148)(32,147,144,35)(33,34,145,146)(45,68,90,113)(46,112,91,67)(47,66,92,111)(48,110,93,65)(49,64,94,109)(50,108,95,63)(51,62,96,107)(52,106,97,61)(53,60,98,105)(54,104,99,59)(55,58,100,103)(56,102,101,57)(69,88,114,89)(70,132,115,87)(71,86,116,131)(72,130,117,85)(73,84,118,129)(74,128,119,83)(75,82,120,127)(76,126,121,81)(77,80,122,125)(78,124,123,79)>;

G:=Group( (1,124)(2,125)(3,126)(4,127)(5,128)(6,129)(7,130)(8,131)(9,132)(10,89)(11,90)(12,91)(13,92)(14,93)(15,94)(16,95)(17,96)(18,97)(19,98)(20,99)(21,100)(22,101)(23,102)(24,103)(25,104)(26,105)(27,106)(28,107)(29,108)(30,109)(31,110)(32,111)(33,112)(34,113)(35,114)(36,115)(37,116)(38,117)(39,118)(40,119)(41,120)(42,121)(43,122)(44,123)(45,167)(46,168)(47,169)(48,170)(49,171)(50,172)(51,173)(52,174)(53,175)(54,176)(55,133)(56,134)(57,135)(58,136)(59,137)(60,138)(61,139)(62,140)(63,141)(64,142)(65,143)(66,144)(67,145)(68,146)(69,147)(70,148)(71,149)(72,150)(73,151)(74,152)(75,153)(76,154)(77,155)(78,156)(79,157)(80,158)(81,159)(82,160)(83,161)(84,162)(85,163)(86,164)(87,165)(88,166), (1,135)(2,136)(3,137)(4,138)(5,139)(6,140)(7,141)(8,142)(9,143)(10,144)(11,145)(12,146)(13,147)(14,148)(15,149)(16,150)(17,151)(18,152)(19,153)(20,154)(21,155)(22,156)(23,157)(24,158)(25,159)(26,160)(27,161)(28,162)(29,163)(30,164)(31,165)(32,166)(33,167)(34,168)(35,169)(36,170)(37,171)(38,172)(39,173)(40,174)(41,175)(42,176)(43,133)(44,134)(45,112)(46,113)(47,114)(48,115)(49,116)(50,117)(51,118)(52,119)(53,120)(54,121)(55,122)(56,123)(57,124)(58,125)(59,126)(60,127)(61,128)(62,129)(63,130)(64,131)(65,132)(66,89)(67,90)(68,91)(69,92)(70,93)(71,94)(72,95)(73,96)(74,97)(75,98)(76,99)(77,100)(78,101)(79,102)(80,103)(81,104)(82,105)(83,106)(84,107)(85,108)(86,109)(87,110)(88,111), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,33)(12,34)(13,35)(14,36)(15,37)(16,38)(17,39)(18,40)(19,41)(20,42)(21,43)(22,44)(45,67)(46,68)(47,69)(48,70)(49,71)(50,72)(51,73)(52,74)(53,75)(54,76)(55,77)(56,78)(57,79)(58,80)(59,81)(60,82)(61,83)(62,84)(63,85)(64,86)(65,87)(66,88)(89,111)(90,112)(91,113)(92,114)(93,115)(94,116)(95,117)(96,118)(97,119)(98,120)(99,121)(100,122)(101,123)(102,124)(103,125)(104,126)(105,127)(106,128)(107,129)(108,130)(109,131)(110,132)(133,155)(134,156)(135,157)(136,158)(137,159)(138,160)(139,161)(140,162)(141,163)(142,164)(143,165)(144,166)(145,167)(146,168)(147,169)(148,170)(149,171)(150,172)(151,173)(152,174)(153,175)(154,176), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44)(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88)(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176), (1,22,157,134)(2,133,158,21)(3,20,159,176)(4,175,160,19)(5,18,161,174)(6,173,162,17)(7,16,163,172)(8,171,164,15)(9,14,165,170)(10,169,166,13)(11,12,167,168)(23,44,135,156)(24,155,136,43)(25,42,137,154)(26,153,138,41)(27,40,139,152)(28,151,140,39)(29,38,141,150)(30,149,142,37)(31,36,143,148)(32,147,144,35)(33,34,145,146)(45,68,90,113)(46,112,91,67)(47,66,92,111)(48,110,93,65)(49,64,94,109)(50,108,95,63)(51,62,96,107)(52,106,97,61)(53,60,98,105)(54,104,99,59)(55,58,100,103)(56,102,101,57)(69,88,114,89)(70,132,115,87)(71,86,116,131)(72,130,117,85)(73,84,118,129)(74,128,119,83)(75,82,120,127)(76,126,121,81)(77,80,122,125)(78,124,123,79) );

G=PermutationGroup([[(1,124),(2,125),(3,126),(4,127),(5,128),(6,129),(7,130),(8,131),(9,132),(10,89),(11,90),(12,91),(13,92),(14,93),(15,94),(16,95),(17,96),(18,97),(19,98),(20,99),(21,100),(22,101),(23,102),(24,103),(25,104),(26,105),(27,106),(28,107),(29,108),(30,109),(31,110),(32,111),(33,112),(34,113),(35,114),(36,115),(37,116),(38,117),(39,118),(40,119),(41,120),(42,121),(43,122),(44,123),(45,167),(46,168),(47,169),(48,170),(49,171),(50,172),(51,173),(52,174),(53,175),(54,176),(55,133),(56,134),(57,135),(58,136),(59,137),(60,138),(61,139),(62,140),(63,141),(64,142),(65,143),(66,144),(67,145),(68,146),(69,147),(70,148),(71,149),(72,150),(73,151),(74,152),(75,153),(76,154),(77,155),(78,156),(79,157),(80,158),(81,159),(82,160),(83,161),(84,162),(85,163),(86,164),(87,165),(88,166)], [(1,135),(2,136),(3,137),(4,138),(5,139),(6,140),(7,141),(8,142),(9,143),(10,144),(11,145),(12,146),(13,147),(14,148),(15,149),(16,150),(17,151),(18,152),(19,153),(20,154),(21,155),(22,156),(23,157),(24,158),(25,159),(26,160),(27,161),(28,162),(29,163),(30,164),(31,165),(32,166),(33,167),(34,168),(35,169),(36,170),(37,171),(38,172),(39,173),(40,174),(41,175),(42,176),(43,133),(44,134),(45,112),(46,113),(47,114),(48,115),(49,116),(50,117),(51,118),(52,119),(53,120),(54,121),(55,122),(56,123),(57,124),(58,125),(59,126),(60,127),(61,128),(62,129),(63,130),(64,131),(65,132),(66,89),(67,90),(68,91),(69,92),(70,93),(71,94),(72,95),(73,96),(74,97),(75,98),(76,99),(77,100),(78,101),(79,102),(80,103),(81,104),(82,105),(83,106),(84,107),(85,108),(86,109),(87,110),(88,111)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,33),(12,34),(13,35),(14,36),(15,37),(16,38),(17,39),(18,40),(19,41),(20,42),(21,43),(22,44),(45,67),(46,68),(47,69),(48,70),(49,71),(50,72),(51,73),(52,74),(53,75),(54,76),(55,77),(56,78),(57,79),(58,80),(59,81),(60,82),(61,83),(62,84),(63,85),(64,86),(65,87),(66,88),(89,111),(90,112),(91,113),(92,114),(93,115),(94,116),(95,117),(96,118),(97,119),(98,120),(99,121),(100,122),(101,123),(102,124),(103,125),(104,126),(105,127),(106,128),(107,129),(108,130),(109,131),(110,132),(133,155),(134,156),(135,157),(136,158),(137,159),(138,160),(139,161),(140,162),(141,163),(142,164),(143,165),(144,166),(145,167),(146,168),(147,169),(148,170),(149,171),(150,172),(151,173),(152,174),(153,175),(154,176)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44),(45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88),(89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176)], [(1,22,157,134),(2,133,158,21),(3,20,159,176),(4,175,160,19),(5,18,161,174),(6,173,162,17),(7,16,163,172),(8,171,164,15),(9,14,165,170),(10,169,166,13),(11,12,167,168),(23,44,135,156),(24,155,136,43),(25,42,137,154),(26,153,138,41),(27,40,139,152),(28,151,140,39),(29,38,141,150),(30,149,142,37),(31,36,143,148),(32,147,144,35),(33,34,145,146),(45,68,90,113),(46,112,91,67),(47,66,92,111),(48,110,93,65),(49,64,94,109),(50,108,95,63),(51,62,96,107),(52,106,97,61),(53,60,98,105),(54,104,99,59),(55,58,100,103),(56,102,101,57),(69,88,114,89),(70,132,115,87),(71,86,116,131),(72,130,117,85),(73,84,118,129),(74,128,119,83),(75,82,120,127),(76,126,121,81),(77,80,122,125),(78,124,123,79)]])

94 conjugacy classes

class 1 2A2B2C2D2E2F4A4B4C4D4E4F4G11A···11E22A···22AI44A···44AN
order1222222444444411···1122···2244···44
size1111224422224444442···22···22···2

94 irreducible representations

dim1111112222222
type++++++++++
imageC1C2C2C2C2C2D4C4○D4D11D22D22C11⋊D4D445C2
kernelC23.23D22Dic11⋊C4D22⋊C4C23.D11C2×C11⋊D4C22×C44C2×C22C22C22×C4C2×C4C23C22C2
# reps1221112451052040

Matrix representation of C23.23D22 in GL4(𝔽89) generated by

35000
398600
0010
0001
,
88000
08800
00880
00088
,
88000
08800
0010
0001
,
583100
58800
002725
003630
,
315800
85800
006077
008529
G:=sub<GL(4,GF(89))| [3,39,0,0,50,86,0,0,0,0,1,0,0,0,0,1],[88,0,0,0,0,88,0,0,0,0,88,0,0,0,0,88],[88,0,0,0,0,88,0,0,0,0,1,0,0,0,0,1],[58,58,0,0,31,8,0,0,0,0,27,36,0,0,25,30],[31,8,0,0,58,58,0,0,0,0,60,85,0,0,77,29] >;

C23.23D22 in GAP, Magma, Sage, TeX

C_2^3._{23}D_{22}
% in TeX

G:=Group("C2^3.23D22");
// GroupNames label

G:=SmallGroup(352,124);
// by ID

G=gap.SmallGroup(352,124);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-11,217,218,86,11525]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^22=c,e^2=c*b=b*c,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=b*d^21>;
// generators/relations

׿
×
𝔽